Search results

1 – 10 of 24
Content available
Article
Publication date: 12 July 2011

Ludger Klinkenbusch and Wolfgang Mathis

320

Abstract

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 4
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 2 January 2009

Christian Möller and Ludger Klinkenbusch

The purpose of this paper is to introduce and investigate a useful and practicable definition of the shielding effectiveness (SE) of enclosures for transient near‐field sources.

Abstract

Purpose

The purpose of this paper is to introduce and investigate a useful and practicable definition of the shielding effectiveness (SE) of enclosures for transient near‐field sources.

Design/methodology/approach

The transient SE is defined as the ratio of electromagnetic energies absorbed by an unshielded and by a shielded vanishingly small load. That ratio can be found analytically by means of a suitable spherical‐multipole approach. The SE can be reduced to easily measurable values of frequency‐domain electric and magnetic fields.

Findings

Suitable factors are introduced which depend on the frequency and on the distance between the dipole source and the measurement point inside the shield. The proposed definition has been analytically evaluated and validated for the case of a cylindrical shield.

Originality/value

The paper extends a recently proposed definition of the transient SE for plane‐wave incidence to the case of a dipole near‐field source.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 May 2013

Michael Kijowski and Ludger Klinkenbusch

The purpose of this paper is to compare exact and Physical‐Optics‐approximated results of the electromagnetic field scattered by a perfectly conducting semi‐infinite elliptic cone…

Abstract

Purpose

The purpose of this paper is to compare exact and Physical‐Optics‐approximated results of the electromagnetic field scattered by a perfectly conducting semi‐infinite elliptic cone illuminated by a plane wave. The results are important for judging the reliability of Physical‐Optics based field estimations of electrically large environments which include tip‐like structures (e.g. airport scenarios).

Design/methodology/approach

The spherical‐multipole analysis is applied to determine the exact total field outside a perfectly conducting semi‐infinite elliptic cone. The underlying boundary‐value problem is solved by a separation of variables of the Helmholtz equation in sphero‐conal coordinates leading to a two‐parametric eigenvalue problem with two coupled Lamé differential equations. The exact scattered far field is determined from the exact surface current on the cone using a bilinear expansion of the dyadic Green's function. The Physical‐Optics (PO) field is evaluated similarly starting from a surface current which is directly found from the incident magnetic field.

Findings

The diffraction coefficients of the exact scattered field and the PO scattered field are compared for different parameters (polarization and angle of incidence) of the plane wave. Reasonably well corresponding results are obtained for those angles of incidence of the plane wave where the entire cone is illuminated, otherwise the error of the PO approximation is increasing not just in the shadow region.

Originality/value

If carefully applied, the Physical‐Optics method can be useful and sufficient to obtain fields scattered by cone‐like structures.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 July 2011

Stefan Ludwig and Wolfgang Mathis

This paper aims to present a method for the efficient reduction of networks modelling parasitic couplings in very‐large‐scale integration (VLSI) circuits.

Abstract

Purpose

This paper aims to present a method for the efficient reduction of networks modelling parasitic couplings in very‐large‐scale integration (VLSI) circuits.

Design/methodology/approach

The parasitic effects are modelled by large RLC networks and current sources for the digital switching currents. Based on the determined behaviour of the digital modules, an efficient description of these networks is proposed, which allows for a more efficient model reduction than standard methods.

Findings

The proposed method enables a fast and efficient simulation of the parasitic effects. Additionally, an extension of the reduction method to elements, which incorporate some supply voltage dependence to model the internal currents more precisely than independent current sources is presented.

Practical implications

The presented method can be applied to large electrical networks, used in the modelling of parasitic effects, for reducing their size. A reduced model is created which can be used in investigations with circuit simulators requiring a lowered computational effort.

Originality/value

Contrary to existing methods, the presented method includes the knowledge of the behaviour of the sources in the model to enhance the model reduction process.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 July 2011

Stefan Gebhardt and Gernot Scheinert

The purpose of this paper is to calculate the two‐dimensional (2D) centre position of objects with known shapes based on the reconstruction image of a square sensing area…

Abstract

Purpose

The purpose of this paper is to calculate the two‐dimensional (2D) centre position of objects with known shapes based on the reconstruction image of a square sensing area estimated with simulated and measured data by using electrical capacitance tomography (ECT).

Design/methodology/approach

A 2D electrostatic finite element model is used to calculate the capacitances between electrode pairs. A reconstruction algorithm with low computation time provides suitable images for subsequent image processing techniques. The results based on numerical data are verified by measurements.

Findings

It is possible to calculate the centre position of up to four rods (cross‐sectional area about 5 per cent of the measuring area) with an accuracy of 3 per cent in both coordinate directions related to the dimensions of the measuring area.

Originality/value

The paper presents an efficient method for position determination of several objects with known shape and uniform permittivity distribution by using ECT measurements with low‐cost electronic for industrial application.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 July 2011

Guenter Wollenberg and Sergey V. Kochetov

The paper aims to give the reader a consolidated state of art in the full‐wave modeling of passive interconnection systems using equivalent circuits and presents several…

Abstract

Purpose

The paper aims to give the reader a consolidated state of art in the full‐wave modeling of passive interconnection systems using equivalent circuits and presents several advantageous techniques developed by the authors.

Design/methodology/approach

The paper presents the theory of generalized partial element equivalent circuit (PEEC) modeling in the frequency domain (FD) and time domain (TD) developed by the authors. The widely spread simplified approaches are derived from this general formulation and the most important issues (e.g. stability in the TD) are considered. The theoretical part is completed by a simulation example, which shows the efficiency of studied methods.

Findings

Novel approaches for co‐simulation of passive interconnections in their circuit environment.

Practical implications

The PEEC method is widely used in the practice of computational electromagnetics, e.g. by the authors in the practical electromagnetic compatibility simulation.

Originality/value

The paper is based on the original work of authors carried through over many years.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 July 2011

Bernd Ponick

Approaches for a miniaturisation of electrical machines that are based on an electromagnetic principle have to overcome numerous challenges. Some of these are only a result of the…

Abstract

Purpose

Approaches for a miniaturisation of electrical machines that are based on an electromagnetic principle have to overcome numerous challenges. Some of these are only a result of the rules of growth (or shrinkage), some are a result of the micro technological fabrication processes. This paper aims to give an overview of the current state of the art including various examples of linear and rotating micro actuators that have been realised.

Design/methodology/approach

The paper presents details of further miniaturisation by using thin film technology for depositing and structuring soft magnetic and hard magnetic material as well as copper for conductors and insulation.

Findings

There are numerous limitations for the miniaturisation with respect to material properties, friction/guidance, etc. and this paper illustrates ways to overcome these limitations.

Originality/value

The paper presents a compact overview on the achievements gained in 12 years of research within a collaborative research centre of the German DFG.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 July 2011

Marcin Ziolkowski and Stanislaw Gratkowski

The purpose of this paper is to present the methodology of designing an exciter for Magnetic Induction Tomography (MIT). The design of the exciter must satisfy the following…

Abstract

Purpose

The purpose of this paper is to present the methodology of designing an exciter for Magnetic Induction Tomography (MIT). The design of the exciter must satisfy the following requirements: maximize MIT system sensitivity and minimize harmful influence on electronic MIT equipment.

Design/methodology/approach

Two objective functions are considered, namely: a magnetic flux density in the protected regions and a module of the eddy‐current density vector in the object under test in the vicinity of a sensor. The paper shows a multi‐objective optimization technique (based on the weighted sum method) which, by coupling the finite‐element method with a genetic algorithm, supports the design of the exciter.

Findings

It is possible to design in a relatively simple way an exciter for MIT under the given assumptions.

Originality/value

Detailed description of the multi‐objective optimization procedure has been presented.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 July 2011

Konstantinos Rallis and Theodoros Theodoulidis

The paper aims to develop expressions for calculating the mutual impedance between isolated conductors buried in homogeneous earth. The conductors have finite length and arbitrary…

Abstract

Purpose

The paper aims to develop expressions for calculating the mutual impedance between isolated conductors buried in homogeneous earth. The conductors have finite length and arbitrary position.

Design/methodology/approach

The conductors are represented by the use of elementary electric dipoles. Well‐known existing expressions are employed for the electric field of these dipoles. The induced voltages are evaluated and the final expressions for the mutual impedance are derived. The resulting expressions involve infinite double integrals, evaluated by using adaptive quadratures that are, however, time consuming. Therefore, an alternative approach is followed involving Sommerfeld integrals (SI) for representing the electric field of a dipole and a recently devised method for computing the SI, in the spatial domain, by using calculation of discrete complex images.

Findings

Final expressions for parallel and perpendicular conductors were derived and numerical results for several values of frequency, conductors' length and horizontal distance between them, were produced. Comparison to results produced with the well‐known Pollaczek formula showed excellent agreement.

Research limitations/implications

For future research, it is possible to use the developed expressions for earthing systems study, where the grounding grid is discretized and the moment method is invoked.

Originality/value

Currently, the formulas used for calculating mutual impedance are valid for parallel conductors of infinite length. With the present work, accurate expressions are given for finite length and arbitrary horizontal positioned conductors. In addition, the use of SI and the discrete complex image method results in a rapid and efficient tool for massive impedance calculations.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 July 2011

Galia Marinova and Dimitar Dimitrov

The paper aims to present a learning environment for optimal synthesis of voltage regulator circuits (LEOS‐VRC) using PSPICE simulator.

Abstract

Purpose

The paper aims to present a learning environment for optimal synthesis of voltage regulator circuits (LEOS‐VRC) using PSPICE simulator.

Design/methodology/approach

LEOS‐VRC supports a database with voltage regulator circuits edited as projects in PSPICE compatible format and a methodology for optimal synthesis. The methodology is based on the estimation of multiple voltage regulator circuits' realizations over a given specification, through comparative study in PSPICE, using a set of predefined specific electrical characteristics, which values are determined from simulation waveforms. LEOS‐VRC allows integrating the voltage regulator circuit in a power supply system through adding transformer, rectifier and control stages. Both linear and switch‐mode power supplies are considered.

Findings

The methodology and examples proposed illustrate the efficiency of LEOS‐VRC for teaching and self‐education in the area of power supply circuit design.

Research limitations/implications

In future LEOS‐VRC database will be enlarged with new voltage regulator circuit topologies and new controller circuits.

Practical implications

LEOS‐VRC is suitable for students in electronics and designers of power supply circuits.

Originality/value

With LEOS‐VRC students become familiar with multisolution synthesis. By analyzing the complex behaviour of the power supply system and applying comparative study and optimization criteria, they can make a motivated selection of an optimal voltage regulator design solution for a concrete application.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 24